Template-free synthesis and encapsulation technique for layer-by-layer polymer nanocarrier fabrication.

نویسندگان

  • Aisha Qi
  • Peggy Chan
  • Jenny Ho
  • Anushi Rajapaksa
  • James Friend
  • Leslie Yeo
چکیده

The encapsulation of therapeutic molecules within multiple layers of biocompatible and biodegradable polymeric excipients allows exquisite design of their release profile, to the extent the drug can be selectively delivered to a specific target location in vivo. Here, we develop a novel technique for the assembly of multilayer polyelectrolyte nanocarriers based on surface acoustic wave atomization as a rapid and efficient alternative to conventional layer-by-layer assembly, which requires the use of a sacrificial colloidal template over which consecutive polyelectrolyte layers are deposited. Polymer nanocarriers are synthesized by atomizing a polymer solution and suspending them within a complementary polymer solution of opposite charge subsequent to their solidification in-flight as the solvent evaporates; reatomizing this suspension produces nanocarriers with a layer of the second polymer deposited over the initial polymer core. Successive atomization-suspension layering steps can then be repeated to produce as many additional layers as desired. Specifically, we synthesize nanocarriers comprising two and three, and up to eight, alternating layers of chitosan (or polyethyleneimine) and carboxymethyl cellulose within which plasmid DNA is encapsulated and show in vitro DNA release profiles over several days. Evidence that the plasmid's viability is preserved and hence the potential of the technique for gene delivery is illustrated through efficient in vitro transfection of the encapsulated plasmid in human mesenchymal progenitor and COS-7 cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Layer by Layer RNA encapsulation for genetic therapy nanodevices construction D.Sanz

The Layer by Layer (LBL) technique, based on the alternative assembly of oppositely charged polyelectrolyte molecules, is a very versatile tool for the fabrication of thin polymer film with controlled features at the nanoscale [2]. We have applied the LBL technique to encapsulate purified total RNA between polyelectrolyte layers as a negative charged biopolyelectrolyte in Chitosane/Alginate/RNA...

متن کامل

Fabrication of dye sensitized solar cells with a double layer photoanode

Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles  were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition  method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP ...

متن کامل

Fabrication of Thermoresponsive Cross-Linked Poly(N-isopropylacrylamide) Nanocapsules and Silver Nanoparticle-Embedded Hybrid Capsules with Controlled Shell Thickness

Hollow polymeric nanocapsules have attracted great interest in recent years due to their broad applications in controlledrelease carriers, catalysis, nanoreactors, and encapsulation of guest molecules. Polymeric nanocapsules have been typically fabricated via the selfassembly of block copolymers, 5 polymerization within lipid vesicles, emulsion polymerization, 14 and the sacrificial core-templa...

متن کامل

Effect of Seed Layer on the Morphology of ‎Zinc Oxide Nanorods as an Electron ‎Transport Layer in Polymer Solar Cells ‎

   Zinc oxide has been considered as a promising semiconductor material for fabrication of transparent conductive oxides (TCOs), electronic devices, optoelectronics, and solar cells. Among the various morphologies of zinc oxide, nanorods are more widely used because of the ease of synthesis and providing a direct path for the transport of charge carriers. The electrochemical deposi...

متن کامل

Sputtered Encapsulation as Wafer Level Packaging for Isolatable MEMS Devices: A Technique Demonstrated on a Capacitive Accelerometer

This paper discusses sputtered silicon encapsulation as a wafer level packaging approach for isolatable MEMS devices. Devices such as accelerometers, RF switches, inductors, and filters that do not require interaction with the surroundings to function, could thus be fully encapsulated at the wafer level after fabrication. A MEMSTech 50g capacitive accelerometer was used to demonstrate a sputter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 5 12  شماره 

صفحات  -

تاریخ انتشار 2011